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Abstract 
A general method for the model-free reconstruction 
of magnetization densities is presented. The technique 
is based upon the maximum-entropy principle and is 
valid for systems with any space-group symmetry, 
any physically reasonable ordered moment and allows 
for the incorporation of relevant corrections such as 
extinction. Thus, it is possible, for the first time, to 
reconstruct the real-space magnetization densities in 
essentially any physical system exhibiting a ferromag- 
netic spin alignment (either natural or induced) from 
polarized neutron diffraction experiments. The technique 
is illustrated for the purely organic ferromagnet, 
fl-4,4,5,5-tetramethyl-2-p-(nitrophenyl)-3-oxido-4,5-di- 
hydroimidazolium 1-oxyl. 

I. Introduction 
Entropy maximization and Bayesian inference have be- 
come powerful tools for solving reconstruction problems 
given incomplete and/or noisy information. They are of 
fundamental importance, forming the basis for statistical 
mechanics (e.g. Grandy, 1989; Gzyl, 1995) and play an 
important role in the analysis of experimental data from 
a wide variety of fields, such as astronomy, medicine, 
economics and condensed-matter physics (e.g. Smith & 
Grandy, 1985; Erickson & Smith, 1988; Skilling, 1989; 
Mohammad-Djafari & Demoments, 1993). 

In neutron and X-ray scattering, one is essentially 
faced with the problem of the (complex) Fourier inver- 
sion of a limited set of noisy data in order to find the 
corresponding real-space scattering density. Moreover, 
there is usually an additional loss of information through 
the intervening non-linearity relating the measurement 
to the Fourier coefficients. For example, the Fourier 
transform of the real-space charge distribution gives the 
corresponding X-ray structure factor, but X-ray diffrac- 
tion only measures its magnitude not its phase. There is 
obviously no unique solution to such problems. 
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Of course, one possibility is to develop a model 
describing the real-space scattering density whose pa- 
rameters are optimized to fit the experiment. This is often 
difficult, however. Furthermore, features that a model 
does not account for, but are contained in the data, will 
not be revealed. Thus, it is desirable to have a model- 
free§ tool that gives a relatively unbiased real-space 
representation of the reciprocal-space measurements. 

Since the model-free solution is not unique, in a sense, 
the best one can do is to try and find the most reasonable 
map whose Fourier transform is consistent with the 
experimental data. Crudely speaking, the maximum- 
entropy (MAXENT) principle provides a definition of 
what is 'reasonable' and the scheme for selecting the 
'best' map.¶ A variety of techniques can be used for 
finding the MAXENT solution. Many are restricted to 
linear reconstruction problems, where the Fourier coef- 
ficients are directly measurable (e.g. Zhuang, Ostevold 
& Haralick, 1987; Sakata & Sato, 1990; Kumazawa, 
Kubota, Takata & Sakata, 1993; Sakata, Uno, Takata & 
Howard, 1993; De Vries, Briels & Feil, 1994; Steenstrup 
& Hansen, 1994; Takata, Sakata, Kumazawa, Larsen & 
Iversen, 1994; Kumazawa, Takata & Sakata, 1995) or are 
specialized to the phase problem in crystallography (e.g. 
Wilkins, Varghese & Lehmann, 1983; Wilkins, 1983; 
Navaza, 1985; Bricogne & Gilmore, 1990; Gilmore, 
Bricogne & Bannister, 1990). Skilling & Bryan (1984) 
have developed a powerful algorithm capable of dealing 
with quite general non-linear reconstructions, where the 
(Fourier) transform of the map is not linearly related 
to the experimental data. This 'Cambridge' MAXENT 
algorithm, as well as a more recent variant by Bryan 
(1990), however, are restricted to real transforms. 

The reconstruction of spin densities for centrosym- 
metric crystals is essentially a straightforward Fourier- 
inversion problem and MAXENT has been successfully 
applied to this (e.g. Papoular & Gillon, 1990; Papoular, 
Ressouche, Schweizer & Zheludev, 1993; Zheludev, 
Papoular, Ressouche & Schweizer, 1995). For non- 
centrosymmetric crystal structures, the situation is more 
complicated: 

§ Model free in the sense that it is independent of atomicity and 
chemical bonding assumptions. 
¶ A more careful interpretation is given by Bryan (1990). 
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The neutron intensity of a Bragg reflection is de- 
I • II  termined by the nuclear h k -- n k 4- m k and magnetic 

I _ . m l t  fn k = m k 4 - t  k structure factors (we will denote complex 
variables by a tilde). The index k refers to a particular 
Bragg reflection defined by the Miller indices and runs 
from 1 to M 0, corresponding to the number of measured 
reflections. The crystal structure is known so that the 
nuclear structure factors are given. In a polarized neutron 
diffraction experiment, one measures the ratio of the 
Bragg intensity for incident 'spin-up' and 'spin-down' 
polarized neutron beams (Gillon & Schweizer, 1989). If 
the sample has a ferromagnetic spin alignment (natural 
or induced), collinear with the incident neutron spin 
polarization,* then the flipping ratio fk is given by 
(Gillon & Schweizer, 1989; Zheludev, Bonnet et al., 
1994) 

2 I I II  I 1 \  Ihk] 2 + qZlthkl2 + 2qkp(mkn k -F m k n k ) (1) 
__  . I I .  I I  ~ ' fk = ihkl 2 + q~l,~kl 2 2q~ep(m~n, k 4- mknk ) 

where qk is related to the angle between the alignment 
of the unpaired spin in the sample and the scattering 
vector Q, p is the neutron polarization (p < 1) and e 
is the flipping efficiency. Since the Fourier transform 
of the spin density is the magnetic structure factor, 
the flipping ratio contains information about the spin 
density. However, in non-centrosymmetric crystals, the 
imaginary part of rh k is non-zero and it is not possible 
to extract from the flipping ratio the two unknowns 
necessary for the Fourier inversion of rh k. Thus, the spin- 
density reconstruction in non-centrosymmetric crystals 
does not reduce to a linear Fourier inversion. 

The strategy of Papoular & Delapalme (1994) at- 
tempts to circumvent this difficulty by approximating 
(1) with a first-order Taylor-series expansion in fla. This 
reduces the problem to a linear Fourier inversion and 
they are able simply to apply the existing Cambridge 
algorithm. The catch, however, is that, for a flipping ratio 
of f = 1 + A f, the second-order term in the expansion 
of (1) is roughly (Af)2/2. For a measured flipping ratio 
of 1.4, the error is thus already 20%. In order to limit 
the artifacts introduced by the approximation, one is 
required to exclude any measured flipping ratios outside 
the interval 0.6 < f0  < 1.4 (which is probably quite 
optimistic). But, the more a flipping ratio deviates from 
unity, the more it is dominated by magnetic scattering. 
The end effect is that one is forced to discard those data 
with the greatest amount of magnetic information! Since 
neutron scattering is an intensity-limited experimental 
technique, one cannot afford to throw away the best 
data. Finally, this approach does not easily allow for the 
inclusion of the usual corrections such as extinction, A/2 
contamination, nuclear polarization etc.; for each correc- 
tion, one must examine the validity of the linearization 
scheme. 

• Note that in order to define the spin orientation and/or to create a fer- 
romagnetic spin component, a magnetic field is applied perpendicular 
to the scattering plane. 

The motivation to develop an algorithm able to use 
the correct functional form [i.e. (1)] is thus quite clear. In 
the next section, we outline how the existing algorithms 
may be generalized to handle the case of a complex 
(Fourier) transform, with an intervening non-linearity 
between the Fourier coefficients and the experimen- 
tal data. §3 then applies this to the spin-density re- 
construction of/3-4,4,5,5-tetramethyl-2-(p-nitrophenyl)- 
3-oxido-4,5-dihydroimidazolium 1-oxyl and compares 
the model-free MAXENT reconstruction to the results 
of a multipole-expansion fit. We also illustrate how to 
use MAXENT to test the validity of a proposed model. 
Finally, §4 concludes the paper with a brief discussion 
of some remaining difficulties. 

2. The M A X E N T  formalism 

Maximum-entropy algorithms are abundantly available 
in the literature, so we will not repeat the full details 
here but simply point out the essential elements that are 
distinct from those for the linear reconstruction problem. 
To that effect, we outline the linear case with real 
transforms and then gradually introduce more general 
situations indicating the steps necessary for dealing with 
the more complicated case. 

In practice, one discretizes a map into N O pixels, 
so that a particular map can be viewed as a vector 
p, where the jth vector component corresponds to the 
average real-space density within the jth pixel. The 
MAXENT reconstruction is obtained by finding the 
global unconstrained maximum of 

Q ( p )  - -  a S ( p ) -  ½C(P),  (2) 

where S is the appropriate entropy functional, C is the 
regular X 2 goodness-of-fit measure (see §2.1) and o~ is 
a positive Lagrange multiplier. In 'historic' maximum 
entropy (Gull & Daniel, 1978; Gull & Skilling, 1984), a 
is used ad hoc as an approach or regularizing parameter 
but it may also be calculated self-consistently (Gull, 
1988). 

In the case where pj > 0, the entropy is given by 
(Skilling, 1988) 

N0 
S(p)  = ~ pj - #j - pj ln(pJ#j) ,  (3) 

j----1 

where #. is a prior map relative to which the entropy 
is defingd. In the absence of the experimental data, 
the map reconstruction p remains the prior map ~. 
Any information known before the experiment can be 
incorporated into the prior map, but often /~ is chosen 
to be a constant. 

The X 2 constraint is closely linked to the type of 
experiment and the particular transformation connecting 
the (real-space) map to the (reciprocal-space) data. Thus, 
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our focus will be on the form of C(p) for different types 
of experiments. 

First, we define the transformation between image 
space and data space by an M 0 × N O matrix R so that 
the data-space representation m of the image p is 

No 
m k = ~,  Rkjpj (4) 

j----I 

or, equivalently, 

m = R p .  (5)  

In the case where the transform R is complex, since 
the image-space density map is still real, one can define 
R as a 2M 0 x N O matrix, where the first M 0 rows 
correspond to the real part of the transform and the 
second half to the imaginary part. Similarly, a complex 
data-space vector 6a becomes a vector with 2M o entries, 
with the real part retained in the first M o entries and the 
imaginary part in the rest. With this notation and storage 
convention, (5) becomes identical for real and complex 
transforms. 

2.1. Real linear mapping 

If the kth observation is denoted m ° with an associated 
uncertainty o- k, the X 2 constraint is 

Mo No 
C(p) = E w~ m ° , - y~ Rkjpj . (6) 

k = l  j = l  

Here, w k is the weighting factor equal to 1/a  k. If the 
weighted residuals are defined as a vector with M 0 
elements (square brackets denote a diagonal matrix) 

r = [ w ] ( m  ° - R p ) ,  (7)  

the constraint function is simply 

C(p) = rTr. (8) 

All iterative algorithms are essentially based upon 
an expansion of Q(p) for arbitrary small variations 6p. 
Focusing on C(p + 6p) and expanding to second order 
in 6p, one obtains 

C(p + 6p) "~ C(p) - 26prRT[w]r 

+ 6prRr[w][w]R6p. (9) 

Correspondingly, an expansion of the entropy gives 

1 S(p + 6p) "~ S(p) + 6 p  T l og (p /# )  - ~ 6 p T [ p - ' ] 6 p .  

(lO) 

The simplest algorithm relies only on the first-order 
term and is sometimes called the 'single-pixel approxi- 
mation' (e.g. Gull & Daniel, 1978; Wilkins, 1983; Sakata 

& Sato, 1990; Sakata, Uno, Takata & Howard, 1993; 
Kumazawa, Takata & Sakata, 1995). These can be quite 
slowly converging and unstable, so that second-order 
variants exist (e.g. Wilkins, Varghese & Lehmann, 1983; 
Skilling & Bryan, 1984; Gull & Skilling, 1989; Bryan, 
1990; De "Cries, Briels & Feil, 1994). 

The condition for a maximum (i.e. a V S -  1 V C  = O) 
gives 

p = # exp(Rra- ' [w] r ) .  (11) 

Typically, one chooses to reconstruct a map with high 
resolution so that the number of pixels usually greatly 
exceeds the number of data points. Since (11) must 
hold, it is more efficient to iterate in 'data space' by 
introducing a new variable u, which is related to the 
map by 

p -  # exp(Rru). (12) 

From the quadratic model for S and C, one can derive an 
iterative equation for u (Gull & Skilling, 1989; Bryan, 
1990) (I is the identity matrix): 

6u = [w](/3I + A) - lg ,  (13) 

with 

A = [w]R[p]Rr[w], g = - a [ w - ' ] u  + r. (14) 

The second-order expansion in 6p is only valid for 
small step sizes, so the constant /3 (_>a) has been 
introduced to restrict the increments (Skilling & Bryan, 
1984; Gull & Skilling, 1989; Bryan, 1990). As initial 
condition, one chooses u = 0 and a very large, u = 0 
corresponds to the MAXENT solution in the absence 
of experimental data (p = #)  and a large a validates 
this choice by making C irrelevant [equation (2)]. The 
iteration then proceeds by succesive applications of 6u 
and simultaneous reductions of a and /3. After each 
iteration, the actual map p is calculated from (12). For 
more details, we refer the reader to Skilling & Bryan 
(1984), Gull & Skilling (1989) and Bryan (1990), and 
note in passing that that the bulk of the computational 
work is in finding the inverse of the M o x M o symmetric 
matrix (/31 + A). Next, we examine how (13) may take 
a different form under more general conditions. 

2.2. Complex linear mapping 

In the case where R is no longer real but complex, 
1~ ' iR" " i.e. kj = Rkj + kj, the ~mage-data transform of (5) 

will produce, in principle, a complex number, so that 
I • II  

~n k -- m k + tm k : 

t I mk = Rkjp j 
J 

, ,  , ,  (15) 
m k -- ~ RkjPj. 

J 
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With the assumption that one can measure the real 
and imaginary parts of rh ° the appropriate constraint k' 
function is now 

-0 2 (16) c = E w l,h, - m, , 
k 

which, if written out explicitly, becomes 

C = ~ w~[(m~ - m°t) 2 ~t . 0,1~21 k + ( m  k -- (17) ¢n k ) J. 
k 

If we store a complex vector as a real vector, with double 
the number of elements, identifying the first half with 
the real part and the second half with the imaginary 
part, then (17) becomes essentially identical to (8), hence 
(13) is unchanged except that data-space variables have 
twice as many elements. Thus, one can apply the same 
algorithms as for real transforms. 

2.3. Real non-linear mapping 

What happens when one has a real transform but the 
measured variable is no longer a linear functional of 
the density map? Suppose that we have a linear real 
transform between the density map and some data-space 
quantity, as in (5), but the quantity measured is no longer 
directly m k but a function fk = f (mk)  with measurements 
f~. Furthermore, let us assume that f (mk) is real. Then 
the constraint function is 

C = E w2[f~ ' -f(mk)] 2 (18) 
k 

or, in vectorized form, 

On the one hand, the neglect of the last term in the 
expansion obviously does not alter the definition of an 
extremum, so that as long as the iteration progresses 
a MAXENT solution will be found. Furthermore, as 
the fit progresses, the residuals r decrease and this last 
term should rapidly loose importance. On the other hand, 
much more severely, the introduction of the non-linearity 
f (Rp)  can render the MAXENT solution non-unique 
(Wilkins, Varghese & Lehmann, 1983). In order to apply 
the above to such a situation, it would be necessary to 
have some prior knowledge that could be incorporated 
into the reference map. Otherwise, more sophisticated 
techniques should be applied (e.g. Bricogne & Gilmore, 
1990; Gilmore, Bricogne & Bannister, 1990). 

2.4. Complex non-linear mapping 

Now we consider practically the most general case, 
where the transform is complex and the measured vari- 
able is a non-linear functional of the map. The appro- 
priate constraint function becomes 

C(p) = . . . ( f ° - f ( m " m " ) ) T [ w 2 ] ( f  ° - f ( m ' ,  m") )  , 

(22) 

where now f is a function of two variables, the real 
and imaginary parts of the complex transform, In' and 
In", defined by (15). Thus, one needs to make a two- 
dimensional Taylor-series expansion off(re ' ,  in"). Under 
the same assumption as that leading to (21), i.e. that 
one can neglect any second-order terms proportional to 
the residuals, we only need to expand f(in ' ,  m") to first 
order. After some algebra to cast the expansion into the 
most compact form, one obtains. 

C(f )  = (f0 _ f (Rp) ) r [w2]  ( f 0 - f ( R p ) ) .  (19) 

A Taylor-series expansion of C(p + 6p) to second order 
in 6p gives 

C(p + 6p) C(p) - 26pTR"[Of][w]r 
+  p"RT[Of][w2][Or]R p 
- 6 p r R r [ O 2 f ] [ w ] [ r ] R r p ,  (20) 

where Of = 0 f ( m ) / 0 m  and 02f = 02 f (m) /Om 2. If the 
last term in (20) is neglected, then a simple rescaling 
of the weights w by Of re-casts the expansion into an 
identical form as for the linear case, so that the same 
iterative algorithms may be retained. Explicitly, one 
writes [Of][w] = [@] and (20) becomes 

C(p + 6p) ~_ C(p) - 26pTRT[fv]r 

+ 6pIRT[~v][CN]Rep (21) 

and (13) is  unchanged. 

c ( p  + ,50) ~- c ( p )  - 2 , S p r R r [ ~ , ] i  • 

+ 25p"RT[f,v]S[g,]RSp, (23) 

o2 "k ," 02 
11  

N2 

C6 

C8 

C6 

C4 C4 

Fig. 1. Atom numbering scheme for 3-4,4,5,5-tetramethyl-2-(p- 
nitrophenyl)-3-oxido-4,5-dihydroimidazolium l-oxyl. 
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where the weights are redefined as 

{ [w]0f/0m"~ _ { [w]0f"~ (24) 
- ~[w]0f/0m, 7 ~, [w]0f' 7 

and the 'complex' residuals have equal real and imag- 
inary parts" 

The complex transform 
2M 0 × N O matrix: 

R is, as described in §2, a 

R_ ( R '  R")" (26) 

The only difference now is that there is an additional 
operator 2S in the second-order term of the expansion. S 
arises owing to the existence of cross terms that multiply 
real and imaginary parts of the complex transforms. The 
matrix S, operating on a complex vector g,, averages the 
real and imaginary parts and is defined as 

S ~ ' -  S - v" v' tk(v'+ ) /2  " (27) 

Note that SSg, = S~, and S T = S. 
Thus, it is in principle possible to retain the same 

algorithms, with only two modifications: data-space vec- 
tors become complex quantities, doubling their storage 
requirements, and the evaluation of the last term in the 
expansion must include the matrix S. In particular, the 
matrix A and vector g [equation (14)] of the data-space 
algorithm become 

A -  2S[w]R[p]RT[w]S 

- - + 

(28) 

An important point to note is that A remains a sym- 
metric matrix. Thus, only a simple modification to the 
evaluation of A in the computer code is necessary to 
generalize the algorithm for the complex non-linear case. 
Whether the iteration actually converges and whether 
a unique solution exists depends on the specific form 
of the non-linearity in f. For example, this approach 
does not work for phaseless (neutron or X-ray) structure- 
factor data with a uniform prior map,/z = constant. The 
spin-density reconstruction problem, however, where 
the magnetic contribution to the scattering is typically 
smaller than the nuclear part, seems not to suffer from 
convergence problems. 

~iiii!iiiiiiii~i~!iiiiiiii~iii~ii~iii~i~i~i~!ii~i!i~ii~i~i~i!i~i~i~i~i~i!~ii~ii~iiii~i~i~i~iii~iiii~i~!iii~iiii~iiiii~iiiiiiii~i~i~ ~:~ ~iil iliiiiiiiiiii!ii!iiiiiiiiii!iiiii!iiiiiiii~ ~i~i!iiiii!!ii̧~i~i̧i~iiiii~iiii~i~i!i!iii~̧ i̧~i~i~i~i~i̧i̧i~i~i~i~i!!i!i~ii~i~i~!!i~i~iii~ii~ii!i!iiiiiiiiiii!i!iii! i i~  I:'~'~'~ 

H~ 

!!i!~!!!• 5!!i! ii 

i~:::<i: . . . .  i!iiii!i!iiiiiiii 

i :?i i i i :  i:i:  

iiiiiiiiiiiiiiiiii~ .... a ...... ............... 

ii!iiiiiiii!!iiiii~ili~i'~ ~iiiiiiii~iiiiiiiiiiiiiiiiiiiiiii~ii~iiiili~ %ii!!iiiiiMi 

' i ~ i i : i  ~iiiiii iii 

~i, !iiiiiiiii~i,,,, .... 

.... (t:) 

0 . 2  

0.1 

0.0 

-0.1 

- 0 . 2  

Fig. 2. Main view of the magnetization density as reconstructed by (a) MAXENT with uniform prior, (b) multipole expansion of Zheludev, 
Bonnet et al. (1994), and (c) MAXENT with multipole expansion as non-uniform prior. The solid lines indicate the principal bonding within 
the molecule. The lower and upper dotted boxes indicate the regions displayed in Figs. 3 and 4, respectively. Note that the scale is in 
units of l.te/~-2. 
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3. Application to flipping ratios 
from polarized neutron experiments 

The task of extracting spin densities from the flipping 
ratios measured by polarized neutron diffraction of a 
k n o w n  non-centrosymmetric structure is exactly the case 
described in §2.4. In the absence of systematic correc- 
tions, the flipping-ratio measurements are related to the 
magnetic structure factor via (1). For the algorithm, we 
require the derivatives offk, which rescale the weights g,: 

where 

Ofk 2q~p(1 + c)(n~a k - m~bk) 
Om t (a k - cpbk) 2 

2q~p(1 4- e) (n~ak  - m~bk)  

O m "  (a k - cpbk)  2 

a k --In~l 2 + q~lmkl e 

b k - 2q~(m~n~ + m~'n~'). 

(29) 

(30) 

(31) 
(32) 

0.50 

}i 

(a) 

0.40 

0.30 

0.20 

O N C N O 
0.10 

0.00 

-0.10 

(b) 

(c) 

Fig. 3. View onto the O - - N m C - - N - - O  fragment, rotated with respect to Fig. 2 by 90 ° about the horizontal. (a), (b) and (c) refer to the 
same reconstructions as in Fig. 2. 
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One may also take into account systematic corrections 
such as A/2 contamination or extinction. In the case of 
secondary type-II extinction, the flipping ratio becomes 

, * u n c o r  r 'a  
fk =Jk  [Y( k + Pb~.)/Y(ak - cPbk)] (33) 

with ru"c"r given by (1) and y(x) is the extinction J k  
correction given by Becker & Coppens (1974): 

y(x) = {1 + C,x + [C2x2/(1 -3 t- C3x)]} -1 /2  (34) 

The variables C 1 , C 2 and C 3 depend upon the scattering 
angle, the effective neutron path length through the 
sample, the neutron wavelength, the lattice constants and 
an extinction parameter g. 

It should be noted that spin densities may be positive 
ornegat ive  (i.e. pj is not positive definite) so that 
the entropy functional (3) must be modified. Various 
suggestions have been made (Sakata, Uno, Takata & 
Howard, 1993; Gull & Skilling, 1989; Steenstrup & 
Hansen, 1994) and our spin-density reconstructions are 
based on the MEMSYSIII subroutine library (Gull & 
Skilling, 1989), which we have modified to handle the 
complex non-linear case. It treats the case of non- 
positive-definite distributions by assuming that a map 
may be expressed as the difference between two sub- 
sidiary positive-definite distributions, leading to a mod- 
ified form for S (Gull & Skilling, 1989). Since this 
modifies the details of the iterative equations, but not 
the general approach, we do not repeat the details here 
but refer the reader to Gull & Skilling (1989). 

3.1. Spin-density reconstruction of/3-4, 4, 5, 5-tetra- 
methyl-2- (p-nitrophen yl ) -3- oxido- 4, 5- dihydroimidazol- 
ium 1-oxyl 

We illustrate the power of this technique on the 
purely organic ferromagnet /3-4,4,5,5-tetramethyl-2- 
(p-nitrophenyl)-3-oxido-4,5-dihydroimidazolium 1-oxyl 
(see Fig. 1 for a schema of the molecule), whose flipping 
ratios were first measured by Zheludev, Bonnet et al. 
(1994), and analyzed using a parametrized multipole 
expansion as a model. An important feature of this data 
set is that the crystal exhibited significant secondary 
type-II extinction. Note that the effect of extinction 
on the flipping ratios is always to bring the measured 
values closer to one. Thus, a neglect of extinction in the 
analysis will tend to result in weaker spin densities. 

4,4,5,5-Tetramethyl-2-(p-nitrophenyl)-3-oxido-4,5- 
di-hydroimidazolium 1-oxyl (p-NPNN) is the first purely 
organic ferromagnet (Kinoshita, 1993). It belongs to the 
family of nitronyl nitroxide free radicals in which one 
unpaired electron is expected to be delocalized mainly 
over the two NO groups of the nitronyl fragment. 

The/3 phase of p-NPNN crystallizes in Fdd2, a non- 
centrosymmetric orthorhombic space group. Its Curie 

temperature was determined to be T = 0.67 K by spe- 
cific heat (Nakazawa et al., 1992) and zero-field muon 
spin rotation (Le et al., 1993). The ferromagnetic na- 
ture of the magnetic structure was clearly confirmed 
by zero-field unpolarized neutron diffraction (Zheludev, 
Ressouche, Schweizer & Turek, 1994). 

The flipping ratios in /3-p-NPNN were measured on 
a single crystal by Zheludev, Bonnet et al. (1994), in an 
applied field H = 4.65 T at low temperature (T = 1.6 
and 2.0 K) but still in the paramagnetic phase. With this 
method, it was not necessary to reach the ferromagnetic 
phase, since the applied field was sufficiently strong to 
induce a ferromagnetic component of the spin density 
in the paramagnetic phase. The 'flipping ratios' f (h ,  k, l) 
were measured for 246 Bragg reflections, using a lifting 
counter spectrometer. 

We performed the reconstruction on a 32 × 32 × 32 
grid in the asymmetric unit of the Fdd2 space group. Fig. 
2 compares the MAXENT reconstruction with a uniform 
prior (Fig. 2a) with the multipole expansion of Zheludev, 
Bonnet et al. (1994) (Fig. 2b). It is important to realize 
that, whereas the model imposes a certain physical 
solution, the MAXENT reconstruction is obtained with 
only the experimental information and the space group. 
The qualitative features are the same, with the main 
spin density centered on the N- -O  free radicals; even 
the p-orbital symmetry is clearly reproduced (Fig. 3). 
In detail, however, some differences are clear: In the 
projection onto the O - - N - - C - - N - - O  molecular plane, 
the model forces a spherically symmetric spin density, 
whereas MAXENT finds it to be more anisotropic. 
Furthermore, the lobes do not have equal weight. Finally, 
we note that a significant disagreement exists for the 
spin density on the C atoms of the nitrophenyl group. 
Zheludev, Bonnet et al. (1994) refined a negative spin 
density, whereas the MAXENT reconstruction finds this 
region to be positive (see Fig. 4). Although the spin 
density in this region is very small, we consistently find 
this result either with or without extinction corrections. 

The quality of map reconstructions can be signifi- 
cantly enhanced through the use of a non-uniform prior 
/z (Zheludev, Papoular, Ressouche & Schweizer, 1995). 
But, also, MAXENT can be used to check whether 
a proposed model contains all the features that an 
experiment may reveal. Thus, a further reconstruction 
was made using the multipole expansion as a prior map 
/.t. Figs. 2(c), 3(c) and 4(c) show that reconstruction now 
resembles the fitted model more closely but that the main 
discrepancies remain. In particular, the spin density on 
the C7 atom of the nitrophenyl group remains positive 
(Fig. 4c). This suggests that either the data contains 
additional systematic errors that must be included in (33) 
or that these differences should be considered significant. 
An argument supporting this is the fact that apparent 
artifacts of equivalent spin density visible in Fig. 2(a) 
vanish when the non-uniform prior map is used, whereas 
the positive spin density in Fig. 4(a) remains. Although 
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there are other corrections that could be included, such as 
A/2 contamination, it seems unlikely, for example, that 
their neglect would give rise to systematic features such 
as the positive spin density on the C7 atoms. This calls 
into question the intermolecular exchange interaction 
proposed (Zheludev, Bonnet et al., 1994), since it relies 
on a negative spin density here. 

Looking at the difference between the non-uniform 
prior map and the reconstruction reveals other weak- 
nesses in the model: Fig. 5 clearly shows that unpaired 
p-orbital spins on the N - - O  free radical are pushed off- 
center owing to their antibonding character. This nicely 
illustrates how the MAXENT reconstruction can be used 
to pinpoint possible deficiencies in a proposed model. 

4. Concluding remarks 

The main point to emphasize is that it is now possible to 
obtain real-space magnetization densities from flipping- 
ratio experiments for virtually any system, without the 
application of a model. The approach presented here is 
very general, allowing one to easily incorporate system- 
atic corrections and eliminates the restriction to weak 
spin systems. 

There are some open issues, however, that have yet 
to be addressed. First, we have not determined whether 
there exists a unique global maximum of (2) for the 
spin-density problem or if there are local extrema into 
which the iterative solution might become locked. A 
sufficient condition for uniqueness (Wilkins, Varghese & 
Lehmann, 1983) is that p r ( V V C ) p  >_ 0 for all possible 
p, i.e. that the X 2 constraint C is convex. For the spin- 
density problem, this condition can be written in the 
form 

Mo 

u~, + vkr k, (35) 
k=l 

where u k and v k are determined from C. It is clear 
that, unless the residuals are zero, C is not purely 
convex, since the second term in (35) may be negative. 
However, one knows that, for the linear cases described 
in §§2.1 and 2.2, C is convex (Wilkins, Varghese & 
Lehmann, 1983). Furthermore, in the limit of weak 
spins, the linearization approximation is accurate. This 
means that one will have a gradual cross over from a 
well determined unique solution to the possibility of 
multiple maxima in Q as the spin density increases: 
effectively, for sufficiently strong spin densities, the 
problem becomes similar to the crystallographic phase 
problem. Preliminary simulations with artificial flipping- 
ratio data for progressively stronger spin systems show, 
however, that this does not seem to be a problem. We 
find that until the magnetic structure factors become 
on average comparable to the nuclear structure factors, 
qualitatively correct maps are reconstructed. Such an 

overall domination of the magnetic contribution is not 
realized in nature, since it requires several tens to 
hundreds of bohr magnetons per atom. 

The extraneous structure found in the MAXENT 
reconstruction above, in particular in the regions far 
from the atoms (see Fig. 2a), suggests that some minor 
artifacts do crop up. In light of this, as well as the general 
criticisms put forward by Jauch & Palmer (1993) and 
Jauch (1994) concerning MAXENT reconstructions, it 
is important to view this as a qualitative tool, designed 
to reveal the general spin-density features and as an 
aid to model development. It is for the latter that we 
imagine MAXENT to be most useful, helping to suggest 
an appropriate description and checking existing models 
for consistency. 

In conclusion, we have outlined a generalization of an 
existing maximum-entropy reconstruction algorithm that 
encompasses complex transforms as well as non-linear 
maps. The technique was applied to spin-density recon- 
structions from polarized neutron scattering experiments, 
showing that a previously proposed linearization approx- 
imation is not necessary for this problem. Furthermore, 
the formalism allows one to incorporate systematic cor- 
rections such as extinction quite easily. This technique 
provides researchers into neutron scattering for the first 
time the ability to obtain quickly a qualitative picture of 
the real-space spin densities, without the application of 
a model, in any physical system with no restrictions on 
the space group or the spin-density magnitude. Using a 
non-uniform prior map, we illustrated how the algorithm 
may serve as a powerful model development tool, point- 
ing out specific deficiencies and determining when the 
information contained in an experiment becomes fully 
consistent with a proposed model. 

References 
Becker, P. & Coppens, P. (1974). Acta Co'st. A30, 129-153. 
Bricogne, G. & Gilmore, C. J. (1990). Acta Co'st. A46, 

284-297. 
Bryan, R. K. (1990). Eur. Biophys. J. 18, 165-174. 
De Vries, R. Y., Briels, W. J. & Feil, D. (1994). Acta Co'st. 

A50, 383-391. 
Erickson, G. J. & Smith, C. R. (1988). Editors. Maximum 

Entropy and Bayesian Methods in Science and Engineering, 
Vol. 1+2. Dordrecht: Kluwer Academic Publishers. 

Gillon, B. & Schweizer, J. (1989). In Molecules in Physics, 
Chemist O' and Biology, Vol. III, edited by J. Maruani, 
pp. 111-147. Dordrecht: Kluwer Academic Publishers. 

Gilmore, C. J., Bricogne, G. & Bannister, C. (1990). Acta 
Co'st. A46, 297-308. 

Grandy, W. T. Jr (1989). Maximum Entropy and Bayesian 
Methods, edited by J. Skilling, pp. 73-92. Dordrecht: Kluwer 
Academic Publishers. 

Gull, S. F. (1988). Maximum Entropy and Bayesian Methods, 
edited by J. Skilling, pp. 53-72. Dordrecht: Kluwer Aca- 
demic Publishers. 



434 MODEL-FREE RECONSTRUCTIONS OF MAGNETIZATION DENSITIES 

Gull, S .F .  & Daniel, G . J .  (1978). Nature (London), 272, 
686-690. 

Gull, S. F. & Skilling, J. (1984). lEE Proc. 131(F), 646-650. 
Gull, S. F. & Skilling, J. (1989). MEMSYSIII Quantified Max- 

imum Entropy Subroutine Library. Meldreth, United King- 
dom. 

Gzyl, H. (1995). The Method of Maximum Entropy. Singapore: 
World Scientific. 

(a) 

iiiii 
C7 C8 C7 

• :,~i::ii :ii!::::i::::::!::i:::::::::::::::::::::::::::::::::::::::::::::::::::: ::~ :,::ii ~i::i::i::iii i i::i :: i::i ::iii:, :i ::::, :,~ii:, ~:,~ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :,:::: ~:: :::,::i:::,i ::iii:i::iii:,iii::iiiii::~.ii ::::ii::iii::i::::i:,~i~ :, :::::::::::::::::::::::::::::::::::::::::: i~ ii:::: ::!i ::~i::~ii'~i:: i~i~?ii::i:::: :::::::::::::::::::::::::::::::::::::: i:, ii:,::i::ii 
::::: i iii::i i iiiiiiiiii! i iii!!::!!iiiiii iii iiiiiiii ii;iiiii::i::i :iiiiiiiiiiiliiiiiiil}iiiiiii::i::iii::~i~i~!~i::i::i::i::i::i:~i!i: ::i::iiiiiiiiililiiii!iii!iiiii!iiiiiiiii iiiiiiiii:~i::iii::i:i ::~::~::iii::iii~i::i~::~::~:J!~i!i::ii~!~::i::~::i::i::iiii::i::i::iiN`̀ .̀.̀ ..i~i?~i~!~i~::iiiii~ii~::~i!::i::i::ii~::~::!::i:~:: ::i i:: ::i:.i:i 

; ' ~  . . . . . . . . . . . . .  ::; ...... v . . . . . .  ...... v 

iii  iiiii i i;iii iiiii iiiii iiii 
: iiiii il; :,iiiiiiiiii!iiiiiii!iiiiiiiiiiii~iiiiiiiiiiiiiiii!!!iiiii!iiiiiiiii!ii:iii:i iiiiiiiiiiiiiiiiiii;iiii:iiii;ii;;iii:;iiiili:iiiiiiiii:;i:;;i ii!iii!ii~iiiii~i!~i~iii~i!ii!i~!i1~iiii~iiiiiii1iiiii!ii!!~!i:ii::iiiiiiiiiiiiiiiiiiiiiiiii!iiiii?iiii:iiiiiiiiiiiii;~iiiiiii~:iiii ::iiiiiiiiiiiiiiiiii~!iiii~i!iiiiiiiii~iN~iNiii!ii#!i!ii~i!iiiii!ii~iiiiiiiiiiiii!!~ ; 

( b )  

0 . 0 2 0  

0 .010  

0 .000  

-0 .010  

- 0 . 0 2 0  

l 

~ . .  

O 

..... 

. ~ ~ ~ ~  • 

Fig. 4. View onto the top three C atoms of the nitrophenyl ring (identical orientation as in Fig. 3). (a), (b) and (c) refer to the same 
reconstructions as in Fig. 2. Note that the multipole expansion predicts here a purely negative (albeit small) spin density, whereas the 
MAXENT reconstruction is mostly positive. 
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Fig. 5. Spin-density difference between the reconstruction with non-uniform prior (Fig. 3c) and the multipole expansion (Fig. 3b). 
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